Resit / Numerical Mathematics 1 / July 7th 2020, University of Groningen

A simple calculator is allowed.

You are allowed to use the material of the course (lecture notes, tutorials).

All answers need to be justified using mathematical arguments.

Total time: 3 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) + 30 minutes (if special needs)

Remember: oral "checks" may be run afterwards.

Exercise 2 (9 points)

Consider the function $f(x) = x^3 - 4x^2 + 3$.

- (a) 1.5 Show that there exists $x^* \in [3, 4]$ such that $f(x^*) = 0$.
- (b) |1| Show that x^* is fixed point of the functions

$$g_1(x) = 4 - \frac{3}{x^2}, \ g_2(x) = \frac{1}{4} \left(x^2 + \frac{3}{x} \right).$$

- (c) 2 Show that there exists a vicinity around x^* such that the iterations $g_1(x^{(k)})$ converge to x^* for $x^{(0)}$ in that vicinity.
- (d) |1.5| What can you say about the convergence to x^* when using g_2 ?

Consider solving the eigenvalue problem $Ax = \lambda x$, with $A \in \mathbb{R}^{n \times n}$ and symmetric positive definite and eigenvalues all different of each other, using the following iterative procedure

$$x_k = Ax_{k-1}, \quad k \ge 1, x_0$$
 given

(e) 3 Show that the sequence x_k converges to the largest eigenvalue of A for any choice of x_0 . Hint: remember that the eigenvectors of A form a basis in \mathbb{R}^n , hence x_0 can be written as a linear combination of those eigenvectors.