Resit / Numerical Mathematics 1 / July 7th 2020, University of Groningen

A simple calculator is allowed.
You are allowed to use the material of the course (lecture notes, tutorials).
All answers need to be justified using mathematical arguments.
Total time: 3 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) +30 minutes (if special needs)
Remember: oral "checks" may be run afterwards.

Exercise 2 (9 points)

Consider the function $f(x)=x^{3}-4 x^{2}+3$.
(a) 1.5 Show that there exists $x^{*} \in[3,4]$ such that $f\left(x^{*}\right)=0$.
(b) 1 Show that x^{*} is fixed point of the functions

$$
g_{1}(x)=4-\frac{3}{x^{2}}, g_{2}(x)=\frac{1}{4}\left(x^{2}+\frac{3}{x}\right) .
$$

(c) 2 Show that there exists a vicinity around x^{*} such that the iterations $g_{1}\left(x^{(k)}\right)$ converge to x^{*} for $x^{(0)}$ in that vicinity.
(d) 1.5 What can you say about the convergence to x^{*} when using g_{2} ?

Consider solving the eigenvalue problem $A x=\lambda x$, with $A \in \mathbb{R}^{n \times n}$ and symmetric positive definite and eigenvalues all different of each other, using the following iterative procedure

$$
x_{k}=A x_{k-1}, \quad k \geq 1, x_{0} \text { given }
$$

(e) 3 Show that the sequence x_{k} converges to the largest eigenvalue of A for any choice of x_{0}. Hint: remember that the eigenvectors of A form a basis in \mathbb{R}^{n}, hence x_{0} can be written as a linear combination of those eigenvectors.

